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1. Introduction 

One of the difficulties in compensating PMD is caused by its statistical nature. In order to compensate for PMD, it is 
essential to know the statistical characteristics of the different PMD parameters. Such consideration must include not 
only first-order, but also higher-orders of PMD. Much of this information is now available. Statistics 
characterization, including probability density functions (PDF) of the second-order PMD (SOPMD) is given in [1,2]. 
However, one of the most important statistical characteristics, namely the statistical dependence between first and 
second order PMD has not yet been fully investigated.  

As shown in [3] an angular speed of the rotation of principal states decreases with the value of differential group 
delay (DGD). The assumption was made that high values of the product of DGD on the angular speed (i.e. the 
perpendicular component of SOPMD) seldom occur when DGD is large and SOPMD is not important for large 
DGD. Our results show, that although the angular speed of the PSP rotation decreases with DGD, the product 
DGD*angular speed, is indeed, linearly increasing with DGD. Therefore, the penalty due to the uncompensated 
high-order PMD is larger for big DGD.  

In this paper we follow a definition of two second-order components of SOPMD [4]: component parallel to PMD 
vector, called polarization dependent chromatic dispersion (PCD), and perpendicular to the PMD vector component, 
causing depolarization. We investigate the statistics of both components of SOPMD vector as functions of DGD. 
We demonstrate theoretically and experimentally, that the root mean square (rms) of the perpendicular component 
of SOPMD vector increases close to linear with DGD, while the rms of PCD does not depend on DGD. 

2. Analytical approach 

Our theoretical investigation of the PMD statistics we base on the expression for SOPMD vector of two 
concatenated fibers (see for example [4]): 
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Here ωτr  is SOPMD vector of two concatenated pieces of fiber, 2R is the transmission matrix of the second fiber, 
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are the first and second order PMD vectors of the first and the second sections, respectively. 
We represent a PMD fiber as a combination of N sections of polarization-maintaining fiber with random 
polarization scattering between the sections.  
 
 
 

Light in this picture goes from the right to the left: this simplifies consideration. The cylinders represent pieces 
of birefringent fiber and the crossed circles represent random polarization scattering between the sections described 
by the random matrix R. Here we assume that R provides uniform scattering over the Poincaré sphere. Equation (1) 
used N times gives the following value for SOPMD vector:  
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where τr∆  is the PMD vector of a single section and nτr  is the PMD vector of n concatenated sections. 

Equation (2) is a sum of cross products of randomly oriented vector τr∆R  with the PMD vector of n sections 

nτr . The last terms in the sum (2) are highly correlated with the vector τr  of the entire link and, therefore, the cross 

products ττ rr ∆× Rn  will be nearly perpendicular to the vector τr  for large n. The smaller becomes n the less 
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correlation remains between nτr  and τr . To within a good approximation we can assume that all the vectors nτr  with 

the numbers n larger than a certain number K have the same magnitude and direction asτr  and all the vectors with 
smaller numbers are completely uncorrelated with τr . In this case the sum (2) will be divided into two parts one 

proportional to τr  and another with the direction random with respect to Nτr : 
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Squaring (3) and averaging we obtain the following expressions for the root mean squares of the parallel ||ωτr  

and perpendicular ⊥ωτr  components of ωτr : 
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Here the sign <  |τ >  denotes averaging over all states with fixed τ , while <>  denotes averaging over all 
possible states with all possible τ . 

Because >< 2
||ωτr  does not depend on the value τ , the average PCD with fixed τ  is the same with the average 

PCD including all possible τ  : >>=<< 2
||
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. Therefore, in deriving (3) we were able to use a known 

relationship for the PCD [2]. Numerical calculations based on 106 samples are in excellent agreement with  (4). 

3. Experimental Results 

The test fiber consisted of 12km of high PMD Dispersion Compensating Fiber (DCF) and 50km standard Corning 
SMF-28 fiber. To reduce the negative Chromatic Dispersion (CD) of the DCF 50km of SMF is used. The total CD 
of the PMDE was measured to be –246ps/nm. 

We measured DGD and PSP as functions of wavelength using both MMM [5] and JME [6] methods. We found 
out that in the presence of PDL three-launch JME method gives more accurate results than two-launch MMM 
method. Using the measured values of DGD and PSP, we calculated both PCD and ⊥ωτr . 

Shown in Fig.1a is a histogram of the DGD. The histograms of PCD component, ||ωτ  and absolute value of 

perpendicular component ⊥ωτr  are presented in Fig.1b,c. The analytical curves were calculated directly from 

theoretical model [2] using the value of ps41=τ  obtained from DGD measurements. 
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Fig. 1. Histograms of the DGD, PCD, and | ⊥ωτr |. 
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Fig.2. Dependence of rms of PCD and ⊥ωτr on  DGD. 

The main result of our investigation is shown in Fig 2. It represents the statistical dependence of the parallel 
(PCD) and perpendicular ⊥ωτr  components of the second-order PMD vector on DGD.  We averaged the DGD values 

within 10 ps size bins, and calculated corresponding rms for PCD and ⊥ωτr in the same bins. Overall we used 1000 
experimental points. Surprisingly enough, the two components of the second-order vector have very different 
behavior with respect to the DGD in the line. The rms of the PCD does not depend on DGD, while ⊥ωτr  for big DGD 
increases linearly. The deviation of the experiment from the theory for the large and small DGD values, we attribute 
to insufficient statistics in the tails of Maxwellian distribution. 

4. Conclusions 

We measured the first and the second-order PMD in a real fiber. Experimental and the theoretical data shows that 
the root mean square value of PCD does not depend on DGD. At the same time the root mean square of the 
perpendicular component ⊥ωτr  increases linearly with DGD. Therefore the importance of the second and higher-
order effects increases with the first-order DGD. There is an excellent agreement between the theory and 
experiment. 

References 

1. G. J. Foschini, R. M. Jopson, L. E. Nelson, and H. Kogelnik, “The statistics of PMD-induced chromatic fiber dispersion’’ IEEE J. Lightwave 
Technol., 17, 1560-65, (1999). 
2. G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Probability densities of second-order polarization mode dispersion including 
polarization dependent chromatic dispersion”,  IEEE Photon. Tech. Lett., 12, 293-295, (2000). 
3. D. Penninckx, F. Bruyere, “Impact of the statistics of second-order polarization-mode dispersion on the system performance’’, in Proc. 
OFC’98, San Jose, CA, 1998, 2, 340-41. 
4. J. P. Gordon and H. Kogelnik, “Polarization mode dispersion in optical fibers’’, PNAS, 97, 4541-50, (2000). 
5. R.M .Jopson, L.E. Nelson, and H. Kogelnik, “Measurement of depolarization and scaling associated with second-order polarization mode 
dispersion in optical fibers”, IEEE Photon. Tech. Lett., 11, 1153-55 (1999). 
6. B.L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis”, IEEE Photon. Tech. Lett., 4, 
1066-69, (1992). 

MO3-4




